
CA463 Concurrent Programming

Lecturer Dr. Martin Crane

mcrane@computing.dcu.ie

Office: L2.51 Ph: x8974

CA463D Lecture Notes (Martin Crane 2014) 1

mailto:mcrane@computing.dcu.ie

Recommended Texts (online/in Library)
• www.computing.dcu.ie/~mcrane/CA463.html

• Recommended Text:
 Foundations of Multithreaded, Parallel and Distributed Programming,
 G.R. Andrews, Addison-Wesley, 2000. ISBN 0-201-35752-6

• Additional Texts:
 Principles of Concurrent and Distributed Programming, M. Ben-Ari,
 Addison-Wesley, 2006.

 Computer Organization and Architecture, W. Stallings, Pearson, 9th Ed, 2012

 The SR Programming Language, Concurrency in Practice, G.R. Andrews
 and R.A. Olsson, Benjamin/Cummings, 1993.

 Java Concurrency in Practice, Brian Goetz et al, Addison-Wesley, 2012

 Using MPI: Portable Parallel Programming with the Message Passing
 Interface‖, W. Gropp, E. Lusk, A. Skjellum, 2nd Edition, MIT Press 1999

CA463D Lecture Notes (Martin Crane 2014) 2

Course Outline
• Introduction to Concurrent Processing

• Critical Sections and Mutual Exclusion

• Semaphores

• Monitors

• Message Passing & Other Communication Mechanisms
(SR & Java)

• Enhanced Concurrency in Java

• Load Balancing and Resource Allocation

• Fault Tolerance

CA463D Lecture Notes (Martin Crane 2014) 3

Assessment

• 25% Continuous Assessment:

– Java Project,

– Set Week 5/6

– To be handed at end of Semester

• 75% January Exam (3 from 4 Questions)

CA463D Lecture Notes (Martin Crane 2014) 4

Lecture 1: Intro to Concurrent
Processing

• Basic Definitions;

• A Simple Analogy;

• More Advanced Definitions;

• Architectures for Concurrency;

• Concurrent Speedup;

• Applications to Multicore Computing.

 CA463D Lecture Notes (Martin Crane 2014) 5

A Preliminary Definition….

 Concurrency is a property of systems in
which several computations can be in progress
simultaneously, and potentially interacting with
each other.

 The computations may be executing on
multiple cores in the same chip, preemptively
time-shared threads on the same processor, or
executed on physically separated processors...

CA463D Lecture Notes (Martin Crane 2014) 6

Concurrency,
Somethin’ for what ails ya?

• Multicore Systems;

• Fast Networks;

• Concurrency:

 the solution to today’s (& tomorrow’s)
 Grand Challenge problems in Climate Change,
 Bioinformatics, Astrophysics etc. etc.?

CA463D Lecture Notes (Martin Crane 2014) 7

A Clear(er) Analogy of Concurrency
• Concurrency is about dealing with lots of things at once.

• Parallelism is about doing lots of things at once.

These are not the same, but they are related.

• Concurrency is about structure, parallelism is about execution.

• Concurrency provides a way to structure a solution to solve a
problem that may (but not necessarily) be parallelizable.

• Example:

– Concurrent: using MS Word, mediaplayer.

– Parallel: calculating a Vector dot product, cells being updated in excel CA463D Lecture Notes (Martin Crane 2014) 8

A Simple Example Problem to Make
Things More Concrete1

• Move a pile of obsolete language manuals to
the incinerator.

• With only one gopher this will take too long.

CA463D Lecture Notes (Martin Crane 2014) 9

1. From R. Pike “Concurrency is not Parallelism”, Waza, Jan 11 2012

A Simple Example With Gophers (cont’d)

• Maybe more gophers…..

• More gophers are not enough; they need more carts.

CA463D Lecture Notes (Martin Crane 2014) 10

More Gophers
• More gophers and more carts

• Faster, but gives rise to bottlenecks at pile, incinerator.

• Also need to synchronize the gophers.

• A message (i.e. communication btw gophers) will do.

CA463D Lecture Notes (Martin Crane 2014) 11

More Gophers

CA463D Lecture Notes (Martin Crane 2014) 12

• Double everything

• Remove the bottleneck; make them really independent.

• This will consume input twice as fast.

• This is the concurrent composition of two gopher
procedures.

More Gophers

• A Note on Concurrent Composition

• This design is not automatically parallel!

• What if only one gopher is moving at a time?

• Then it's still concurrent (that's in the design), just
not parallel.

• However, it's automatically parallelizable!

• Moreover the concurrent composition suggests
other models…

CA463D Lecture Notes (Martin Crane 2014) 13

More Gophers: Another Design

CA463D Lecture Notes (Martin Crane 2014) 14

• Three gophers in action, but with likely delays.

• Each gopher is an independently executing procedure,
plus coordination (communication).

Even More Gophers:
Finer-grained concurrency

• Add another gopher procedure to return empty carts.

• 4 gophers in action for better flow, each doing a simple task.

• If we arrange everything right (implausible but not
impossible), that's 4 times faster than our original 1-gopher
design.

CA463D Lecture Notes (Martin Crane 2014) 15

Even More Gophers (cont’d):
Finer-grained concurrency

• Observation:
– We improved performance by adding a concurrent

procedure to the existing design.

– More gophers doing more work; it runs better.

– This is a deeper insight than mere parallelism.

• Four distinct gopher procedures:
– load books onto cart

– move cart to incinerator

– unload cart into incinerator

– return empty cart

• Different concurrent designs enable different ways to
parallelize. CA463D Lecture Notes (Martin Crane 2014) 16

A Simple Example With Gophers (cont’d):
More parallelization!

• Can now parallelize on the other axis; the concurrent
design makes it easy. 8 gophers, all busy!

• Or maybe no parallelization at all! Keep in mind, even if
only 1 gopher is active at a time (zero parallelism), it's
still a correct & concurrent solution.

CA463D Lecture Notes (Martin Crane 2014) 17

Even More Gophers (cont’d):
Another design

• Here's another way to structure the problem as the
concurrent composition of gopher procedures.

• Two gopher procedures, plus a staging pile.

CA463D Lecture Notes (Martin Crane 2014) 18

Even more Gophers (cont’d):
Another Design

 • Parallelize this in the usual way:

• i.e. run more concurrent procedures to get more
throughput.

CA463D Lecture Notes (Martin Crane 2014) 19

Even More Gophers (cont’d):
A Different Way…

• Bring a staging pile to the multi-gopher concurrent
model:

CA463D Lecture Notes (Martin Crane 2014) 20

Even More Gophers (cont’d):
A Different Way…

• Full on optimization:

CA463D Lecture Notes (Martin Crane 2014) 21

The Lesson from all This…
• There are many ways to break the processing down.

• That's concurrent design.

• Once we have the breakdown, parallelization can fall
out & correctness is easy.

• In our book transport problem, substitute:
– book pile => web content

– gopher => CPU

– cart => marshaling, rendering, or networking

– incinerator => proxy, browser, or other consumer

• It becomes a concurrent design for a scalable web
service with Gophers serving web content.

 CA463D Lecture Notes (Martin Crane 2014) 22

What have we learned thus far?
• Concurrency is the ability to run several parts of a program

or several programs in parallel.
• A modern multi-core computer has several CPU's or several

cores within one CPU.

• Here we distinguish between processes and threads:
– Process: runs independently and isolated of other processes. It

cannot directly access shared data in other processes. The
process resources are allocated to it via the OS, e.g. memory &
CPU time.

– Threads: (or lightweight processes) have their own call stack but
can access shared data. Every thread has its own memory cache.
If a thread reads shared data it stores this data in its own
memory cache. A thread can re-read the shared data.

• Don’t confuse a Process with a Processor (i.e. s/w & h/w)
CA463D Lecture Notes (Martin Crane 2014) 23

Concurrency: Some More Definitions
• Multi-tasking: A single CPU core can only run 1 task at once,

– means CPU actively executes instructions for that one task

• Problem solved by scheduling which task may run at any
given time and when another waiting task will get a turn.

• Amounts to time-slicing between the tasks

CA463D Lecture Notes (Martin Crane 2014) 24

Single-core systems schedule tasks on 1 CPU to multitask

Concurrency: Some More Definitions (cont’d)
• Multi-Core: multitasking OSs can truly run multiple tasks in

parallel.

• Multiple computing engines work independently on different
tasks.

• OS Scheduling dictates which task runs on the CPU Cores.

CA463D Lecture Notes (Martin Crane 2014) 25

Dual-core systems enable multitasking operating systems to execute 2 tasks simultaneously

Concurrency: Some More Definitions (cont’d)

• Multi-threading: extends multitasking to application-level,
– subdivides operations in one application into individual threads.

• Each thread can (conceptually) run in parallel.

• OS divides processing time not only among different applications,

but also among each of the threads within an application.

CA463D Lecture Notes (Martin Crane 2014) 26

Dual-core system enables multithreading

Concurrency: Side note on Multi-threading

• Implicit and Explicit Multi-Threading

• All commercial processors and most experimental ones use
explicit multithreading

—Concurrently execute instructions from different explicit threads

— Interleave instructions from different threads on shared pipelines or
parallel execution on parallel pipelines

• Implicit multithreading is concurrent execution of multiple
threads extracted from single sequential program

— Implicit threads defined statically by compiler or dynamically by
hardware

CA463D Lecture Notes (Martin Crane 2014) 27

Why Concurrency?

CA463D Lecture Notes (Martin Crane 2014) 28

© Argonne National Labs

© ExACT

© UIUC

Nuclear Safety Applications

Life Science/Bioinformatics/Biomedical Applications

Combustion/Turbulence Applications

Computer Architecture Taxonomies for
Concurrency

CA463D Lecture Notes (Martin Crane 2014) 29

Computer Architecture Taxonomies (cont’d)

• SISD Single Instruction Single Data

– Single processor

– Single instruction stream

– Data stored in single memory

– Uni-processor

– Old but still common (RISC)

• SIMD Single Instruction Multiple Data

– Single machine instruction controls
simultaneous execution

– Number of processing elements each
with associated data memory

– Each instruction executed on different
set of data by different processors

– Vector & array processors (for graphics)

 CA463D Lecture Notes (Martin Crane 2014) 30

Classification According
to Flynn

Computer Architecture Taxonomies (cont’d)
• MISD Multiple Instruction

Single Data

– Sequence of data

– Transmitted to set of processors

– Each processor executes different
instruction sequence

– No prototype so far
(Cryptographic Algorithms?)

• MIMD Multiple Instruction Multiple
Data

– Set of processors

– Simultaneously execute different
instruction sequences on different data

– SMPs, clusters and NUMA systems
(more later)

– Most modern Supercomputers use
MIMD with SMPs for specific tasks.

CA463D Lecture Notes (Martin Crane 2014) 31

More on MIMD
• General purpose proc’r; each can process all instructions necessary

• Further classified by method of processor communication

• Tight Coupling

1. Symmetric Multi-Processing (SMP)

– Processors share memory & communicate via that shared memory

– Memory access time to given area of memory is approximately the same for
each processor

2. Asymmetric Multi-Processing (ASMP)

– For SMP some cores used more than others (& some mostly unused)

– With ASMP consume power & increase compute power only on demand

3. Nonuniform Memory Access (NUMA)

– Access times to different regions of memory may differ depending on memory
location relative to a processor

– Benefits limited to particular workloads, e.g. servers where data are often
associated strongly with certain tasks or users

CA463D Lecture Notes (Martin Crane 2014) 32

More on MIMD (cont’d)
• Loose Coupling: Clusters

– Collection of independent nodes
(uniprocessors or SMPs)

– Interconnected to form a cluster

– Working together (often) as unified
resource or different users using
partitions

– Jobs can be real-time or batch

– Communication via fixed path or
network connections

– Alternative to SMP giving high
performance & high availability

CA463D Lecture Notes (Martin Crane 2014) 33

CA463D Lecture Notes (Martin Crane 2014) 34

CA463D Lecture Notes (Martin Crane 2014) 35

Good News!
• This is Great!

• All we need to solve really difficult problems is to
throw multithreading on multicore machines at
them.

• No more problems…….

• There is always a but and this time it’s a BIG one!

CA463D Lecture Notes (Martin Crane 2014) 36

Amdahl’s Law

• Ultimately we would like the system throughput to
be directly proportional to the number of CPUs.

• Unfortunately this ‘perfect’ scenario is impossible
to realise for various reasons:

– Poor Design (how problem is broken down & solved);

– Code Implementation (I/O, inefficient use of memory…);

– Operating System Overhead;

– Etc., etc.,

CA463D Lecture Notes (Martin Crane 2014) 37

Amdahl’s Law (cont’d)
• Gene Amdahl divided a program into 2 sections,

– one that is inherently serial

– and the other which can be parallel.

• Let a be the fraction of program which is inherently
serial.

• Then the Speedup

 𝑆 =
𝑇(𝛼+ 1−𝛼)

𝑇(𝛼+
1−𝛼

𝑃
)

 =
𝑃

1+(𝑃−1)𝛼

• So, if the serial fraction a = 5%, then S ≤ 20.

CA463D Lecture Notes (Martin Crane 2014) 38

Amdahl’s Law (cont’d)

• How does speedup change with different 𝛼?

CA463D Lecture Notes (Martin Crane 2014) 39

Amdahl’s Law (cont’d)
• Graph of S against 1 - 𝛼 for different P

CA463D Lecture Notes (Martin Crane 2014) 40

Amdahl’s Law (cont’d)
• The Sandia Experiments

– The Karp prize was established for the first program to achieve a speed-
up of 200 or better.

– In 1988, a Sandia laboratories team reported a speed-up of over 1,000
on a 1,024 processor system on three different problems.

• How is this possible?

• Moler’s Law
– Amdahl’s Law assumes that serial to parallel fraction, 𝛼, is independent

of the size of the program.
– The Sandia experiments showed this to be false.
– As the problem size increased the inherently serial parts of a program

remained the same or increased at a slower rate than the problem size.
– So Amdahl’s law should be

•𝑆 ≤
1

𝛼(𝑛)

CA463D Lecture Notes (Martin Crane 2014) 41

Amdahl’s Law (cont’d)
• So Amdahl’s law should be

• 𝑆 ≤
1

𝛼(𝑛)

• So as the problem size, 𝑛, increases, 𝛼(𝑛) decreases and the
potential Speedup increases.

• Certain problems demonstrate increased performance by
increasing the problem size.

• For example: Calculations on a 2D Grid

• Regular Problem Size Timings:

– Grid Calculations: 85 seconds 85%

– Serial fraction: 15 seconds 15%

• Double Problem Size Timings:

– 2D Grid Calculations: 680 seconds 97.84%

– Serial fraction: 15 seconds 2.16%

CA463D Lecture Notes (Martin Crane 2014 42

Amdahl’s Law (cont’d)
• So the speedup for a parallel program is not fixed, it’s

influenced by a number of factors.

• By Sullivan’s Theorem:
– Speedup = min(𝑃, 𝐶)

– where 𝑃 is the number of

 processors &

– 𝐶 is the concurrency of the program.

If 𝑁 is the number of operations in the execution graph, and 𝐷 is

the longest path through the graph then the concurrency 𝐶 =
𝑁

𝐷
.

• The maximum speed-up is a property of the structure of
the parallel program.

CA463D Lecture Notes (Martin Crane 2014) 43

An Execution Graph

Amdahl’s Law for Multi-Core Computing

CA463D Lecture Notes (Martin Crane 2014) 44

• Parallel hardware has become more complex in recent years with the
development of multicore chips.

• Designers have more DoF to contend with MC chips than single-core
designs (uniprocessors) e.g. no. cores, simple/complex pipelines etc.

• Such problems are set to become even more complex as move to
thousands of cores per chip.

• Can also move towards more complex chip configurations with either
an SMP or ASMP allocating cores to specific functions.

• Recall Amdahl’s law for Speedup: 𝑆 =
𝑇(𝛼+ 1−𝛼)

𝑇(𝛼+
1−𝛼

𝑃
)

• Let 𝑓 = 1 − 𝛼, be the parallelisable fraction, 𝑛 the number of cores

then: 𝑆 =
1

1−𝑓+
𝑓

𝑛

Hill & Marty’s Extension To Amdahl’s Law
• So, taking Amdahl’s law for Speedup: 𝑆 =

1

1−𝑓+
𝑓

𝑛

• Hill and Marty1 extend this to account for multicore costs

• They use base core equivalent or BCE, a generic unit of cost,
accounting for area, power, dollars, or a combination.

• For 1 unit of BCE, a single processor delivering a single unit of
baseline performance can be built.

• A budget of 𝑛 BCE’s, can be used for a single 𝑛 -BCE core, 𝑛
single-BCE cores, or in general 𝑛

𝑟
 cores each consuming r BCEs

CA463D Lecture Notes (Martin Crane 2013) 45
1. M.D. Hill & M. R. Marty, ‘Amdahl’s law in the Multicore Era’, IEEE Computer Society, July 08

SMP with
(a) 16 Cores &
(b) 4 Cores,
Respectively

Hill & Marty on Amdahl’s Law (cont’d): SMP

• Using a generic single-core performance model, authors
assume an 𝑟-BCE core can give performance of perf(𝑟).

• They assumed the functional relationship to be perf(r)= 𝑟

• The resulting speedup (assuming a SMP where all 𝑛 cores

are identical) is given by: 𝑆smp 𝑓, 𝑛, 𝑟 =
1

1−𝑓

𝑝𝑒𝑟𝑓 𝑟
+

𝑓

𝑝𝑒𝑟𝑓 𝑟 .
𝑛

𝑟

 i.e., overall performance made up of a single 𝑟-BCE core on

 serial code part (1 − 𝑓) & all 𝑛

𝑟
 cores on parallelisable part, (𝑓)

CA463D Lecture Notes (Martin Crane 2014) 46

Hill & Marty on Amdahl’s Law (cont’d): SMP

• Graphing : 𝑆smp 𝑓, 𝑛, 𝑟 =
1

1−𝑓

𝑝𝑒𝑟𝑓 𝑟
+

𝑓

𝑝𝑒𝑟𝑓 𝑟 .
𝑛

𝑟

 for 𝑛=256 cores

• We see the following:

– For 𝑟=1 base cores, 𝑛

𝑟
=256 cores,

get a relatively high speedup.

– For 𝑟=256 base cores, 𝑛
𝑟
=1 cores

get a pretty poor speedup.

– For 𝑓 = 0.975, max speedup= 51.2

occurs for 𝑟=7.1 base cores, 𝑛

𝑟
=36 cores.

• Implications:

1. For SMP chips, need 𝑓 ≈ 1 so have to parallelise code to the max!

2. Use more BCEs per core, 𝑟>1 (see example above for max speedup).

CA463D Lecture Notes (Martin Crane 2014) 47

Hill & Marty on Amdahl’s Law (cont’d): ASMP
• Alternative to SMP is Asymmetric MP where some of the cores are more

powerful than the others.

• Here assume that only one core is more powerful.

• With a resource budget of 16 BCEs for example, ASMP can have 1 X 4 BCE
core & 12 single BCE cores (see diagram).

• In general chip will have 1 + 𝑛 − 𝑟 cores since one larger uses 𝑟 resources &
rest have 𝑛 − 𝑟 resources

• The resulting speedup is given by: 𝑆asmp 𝑓, 𝑛, 𝑟 =
1

1−𝑓

𝑝𝑒𝑟𝑓 𝑟
+

𝑓

𝑝𝑒𝑟𝑓 𝑟 +𝑛−𝑟

i.e., overall performance made up of:

– a single (more powerful) 𝑟-BCEcore on serial code part (1 − 𝑓) &

– all cores on parallelisable part, 𝑓 , delivering 𝑝𝑒𝑟𝑓 𝑟 + (𝑛 − 𝑟).1

CA463D Lecture Notes (Martin Crane 2014) 48

ASMP with 1 chip of
4 times the power
Of the 12 others

Hill & Marty on Amdahl’s Law (cont’d): ASMP

• Graphing : 𝑆asmp 𝛼, 𝑛, 𝑟 =
1

1−𝑓

𝑝𝑒𝑟𝑓 𝑟
+

𝑓

𝑝𝑒𝑟𝑓 𝑟 +𝑛−𝑟

 for 𝑛=256 cores

• Something very different to SMP:
– For ASMP, max speedup often reached

between 1 ≤ 𝑟 ≤ 256

– For ASMP, often larger speedup that

SMPs (and never worse) e.g.𝑓 = 0.975,

N=256, max speedup= 125 (v. SMP 51.2)

• Implications:
1. ASMP has great potential for those codes with high serial fraction (small 𝑓)

2. Denser multicore chips increase both speedup benefits of going asymmetric and
optimal performance of single large core. Hence local inefficiency is tolerable if
global efficiency is increase (e.g. by reducing time on sequential phase).

CA463D Lecture Notes (Martin Crane 2014) 49

